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specific Schrodinger equations 
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Seminarie voor Wiskundige Natuurkunde, Rijksuniversiteit Gent, Krijgslaan 281-S9, 
B9000 Gent, Belgium 

Received 27 January 1987 

Abstract. Numerov’s method and an extended version of it are introduced for computing 
eigenvalues of Schrodinger equations with potentials V ( x )  which are even functions with 
respect to x. Furthermore it is assumed that the wavefunctions tend to zero for x + *Co. 

The derived results are compared with previously derived numerical data and with available 
exact values. 

1. Introduction 

The last decade has seen a great deal of interest in the analytical as well as the numerical 
study of one-dimensional Schrodinger equations of the type 

[ D 2 + ( E  - V ( x ) ) ] y ( x ) = d 2 y ( ~ ) / d x 2 + ( E  - V ( X ) ) ~ ( X ) = O  (1.1) 
with V(x) an even function and y(x)  + 0 for x + *CO. The following typical examples 
of potentials have been considered: 

the one-dimensional anharmonic oscillator potential 

V,(x) = x2+Ax2/(1 +gx2) A, g parameters (1.2) 

V , ( X )  = x6 - bx2 b parameter (1.3) 

(1.4) 

(1.5) 

the symmetric double-well potential 

the Razavy potential 

V,(x) = 1/8m2(cosh(4x) - 1) - m ( n  + 1) cosh(2x) 

V4( x )  = Ax2 + px4 + r]x6 

n, m parameters 

the doubly anharmonic oscillator of the type 

r] > 0, A, p, 7 parameters. 

Each of these potentials plays a role in several areas of physics. 
Among the methods followed in the determination of the eigenvalues of the 

differential equation (1.1 1, let us mention the variational Rayleigh-Ritz formalism 
(Mitra 19781, perturbation algorithms (Kaushal 1979, Bessis and Bessis 1980, Killing- 
beck 1979), schemes based upon Pad6 approximants (Lai and Lin 1982), direct 
numerical integration techniques (Fack and Vanden Berghe 1985, 1986, Fack et a1 
1987) and an operator method based upon the SO(2, l )  dynamic group (Fack et a1 
1986). Exact solutions to the Schrodinger equation (1.1) have been constructed with 
V(x) given by (1.2) (Flessas 1981, 1982, Varma 1981, Whitehead er a1 1982) and by 
(1.4) (Razavy 1980). 
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In previous papers (Fack and Vanden Berghe 1985, 1986, Fack et a1 1987) the 
authors have introduced the so-called classical second-, fourth- and sixth-order numeri- 
cal methods whereby ( 1 . 1 )  is in each case discretised in the form 

( J +  h2V)y  = h%y+ t ( h )  (1 .6 )  

in which J is a suitable band matrix, V = ( uU) is a diagonal matrix with uii = V ( x i ) ,  
y = ( y o , .  . . , Y , - , ) ~  and t ( h )  is the error matrix. Although the solutions of ( 1 . 1 )  are 
explicitly defined in [-CO, +CO], it should be noted that these solutions are either of 
even or odd parity, i.e. y ( x ) = * y ( - x ) ,  so that the determination of y ( x )  can be 
restricted to the region [0, +a)]. Furthermore it has been supposed that the wavefunc- 
tions are approximately restricted to obey the Dirichlet boundary condition y ( x )  = 0 
at some x value R, for which an acceptable value is guessed numerically. The interval 
[0, RI is subdivided into equal parts of length h, such that yo = y(O) ,  y ,  = y ( h ) ,  . , . , y ,  = 
y ( N h )  = y ( R ) .  Depending on the order of the method J is either of a tri-, penta- or 
hepta-diagonal form. 

In the present paper we shall treat the Schrodinger equation ( 1 . 1 )  first of all with 
the fourth-order method of Numerov (Froberg 1979). Afterwards an extended 
Numerov method of sixth order will be developed and applied. Sections 2 and 3 
explain the mathematics which form the basis of the proposed methods. The appropri- 
ate discretised formulae are presented. In 0 4 we compare some numerical results with 
those of previous numerical calculations and exact solutions. 

2. Numerov’s fourth-order method 

Numerov’s method applies to second-order differential equations of the form 

Y ” = f ( x , Y )  (2 .1)  
where terms depending on y’ are not present. An easy way to derive that method is 
given by Froberg (1979).  One starts from the operator relation 

S 2  S4 31S6 - I + - - - + - -  
U 2  12 240 60480 ” *  

S 2  _- 

between the second power of U = h D  and the even powers of the central difference 
operator S which applies on a function y ( x )  as follows: 

S y ( x )  = y ( x + i h )  - y ( x  - 4 h )  (2 .3)  
with h the considered step length. After introduction of (2.2) into (2 .1)  one obtains 

( :i Z O  
2 S y ( x )  = h Z  1 +---+-- (2 .4)  

Taking into account only two terms in the series expansion, and denoting x = kh 
( k = O , ( l ) , N - l ;  N h = R ) ,  y ( x ) = y ( k h ) = y k ,  (2 .4)  can be written in the following 
discretised form: 

Y k +  I - 2yk + yk - 1 = 2[h +hi(-&+ 1 -2fk +h - I )] + t k  ( h ) 

t k (  h )  = -& S6yk = -& h6D6yk. 

(2 .5)  

(2 .6)  

where fk =f( kh, y (  k h ) )  and 
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Applying (2.5) to (1.1) results in 

y k + l  -2yk + y k - l  =Ah2[( V k + I - E ) . Y k + l +  lo( v k - E ) y k + (  v k - I - E ) y k - l l + f k ( h )  

or 

y k +  1 ( 12 - h2 v k +  1) + Y k  ( -24 - 10 h2 v k )  + y k  - 1 ( 12 - h v k  - 1) 

= - h 2 E ( y k + l + 1 0 y k + y k - l ) +  f k ( h )  (2.7) 
with v k  = V (  kh) .  

It has been shown by Chawla and Katti (1980) and Andrew (1986) that the 
approximations for E provided by Numerov's method are O( h4) convergent, i.e. 

I E ~ P P ~ - E ~  = 0 ( h 4 ) .  (2.8) 
It is worth mentioning that this result is closely related to the fact that the error term 
t k ( h )  (see (2.6)) is proportional to h6. Considering y - k  = * y k ,  depending on the parity 
of the considered eigenfunctions, one obtains a discretisation of (1.1) in the form 

A Y =  - h 2 E a p p r B y  (2.9) 
with 

(ao.0, uo.1 ; bo.0, b0.d 

= (-24- 10h2Vo, 2( 12 - h2 V I ) ;  10,2) 

=(-24-10h2Vo,0; l0,O) for odd-parity solutions 

for even-parity solutions 

( a k , k - 1 ,  a k . k ,  a k , k + l  ; bk.k- l  9 b k , k ,  b k , k + l )  

=(12-h2Vk-l , -24-10h2Vk,12-h2Vk+l;  1, 10, 1) f o r k = 2 , ( 1 ) ,  N - 2  

and 

( u N - I . N - 2 ,  u N - 1 , N - i ;  b N - I . N - 2 ,  bN-I,N-I)=(12-h2VN-2,-24-10h2VN-1; 1, IO) 
T all other matrix elements of A and B equal to zero and with Y = ( y o ,  y , ,  . . . , yN-l)  , 

Equation (2.9) is a so-called generalised eigenvalue problem. For the non-singular 
matrix B, this problem is equivalent to the classical eigenvalue problem 

B - ' A Y =  - h 2 E a p p r x  (2.10) 

One has to realise that the matrices A, B and B-IA are non-symmetric. After transform- 
ing B-'A to a Hessenberg form, its eigenvalues can be obtained, for example, by the 
well known QR method. Typical FORTRAN and PASCAL computer codes solving (2.10) 
along the above-mentioned lines can be found in Press er a1 (1986). 

3. An extended Numerov method 

For the considered eigenvalue problems there is no reason to restrict the number of 
terms taken into account in the right-hand side of (2.4). As an extension of the classical 
Numerov method, we construct the discretised formulae when three terms in the series 
expansion are included, i.e. 
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(3.2) 

It is quite clear that the accuracy of these solutions with respect to Numerov’s method 
increases roughly by a factor h2.  Applied to the class of Schrodinger equations 
considered one obtains again a discretisation of (1.1) in the form (2.9). The matrices 
A and B have now a pentadiagonal form instead of the tridiagonal one in § 2, i.e. 

(ao,o, ao,l , a0,2 ; bo.0, bo,l, bod 
= (-480- 194h2V0, 2(240-24h2Vl), 

2h2V2; 194,48, -2) for even-parity solutions 

for odd-parity solutions = (-480- 194h2Vo, 0,o; 194,0,0) 

(al,O, al.1 9 a l , 2 ,  a1,3;  bl .O,  b l , l  9 b1,2,  b1.3) 
= (240 - 24h2 Vo, -480 - 194h2 Vi f h2 VI, 

240-24h2V2, h2V,; 24, 194* 1,24, -1) 

with the plus sign for even-parity solutions and the minus sign for the odd-parity ones, 

(ak,k-2, ak,k-1 9 ak,k, ak,k+l, ak ,k+2 ;  bk,k-2, bk,k- l  7 bk,k, b k , k + l r  bk,k+2) 
=(h2Vk-2, 240-24h2Vk-l, -480- 194h2Vk, 240-24h2Vk+1, h2Vk+l; 

-1,24, 194,24, -1) f o r k = 3 , ( 1 ) ,  N - 3  

(UN-2.N-4 ,  aN-2,N-3r UN-2,N-2, UN-2,N-I ; ~ N - z , N - ~ ,  bN-2,N-3r bN-2.N-29 bN-2,N-I) 
= ( h 2  V N - ~ ,  240 - 24h2 VN-3, - 480 - 194h2 V N - ~ ,  

240-24h2V,-,; -1,24,194,24) 

and 

(aN-I,N-3, (IN-I,N-2, U N - I , N - I ;  b N - 1 , N - 3 ,  bN-l,N-2, bN-1,N-I) 
=(h2vN-,,  240-24h2VN-2, -480-194h2VN-,; -1,24,194). 

Numerically the extended Numerov method can be tackled in a completely analogous 
way to Numerov’s method itself. 

4. Numerical results 

To study the accuracy of the two proposed methods we have applied them using some 
of the potentials (1.2)-( 1.5) for specific choices of the occurring parameters. For each 
potential, an appropriate value of R is guessed as described in Fack and Vanden 
Berghe (1985). The R values used are mentioned in the tables. In each considered 
case we have chosen an N value equal to 200. 

In table 1 the obtained energy values ( E n ,  n = 1,4) for the potential (1.2) with 
(A,  g)=(O,O) are compared with the exact values and with the results derived in 
classical fourth- and sixth-order methods (Fack and Vanden Berghe 1985). From this 
it becomes clear that the results of the classical method of the form (1.6) with J 
pentadiagonal and Numerov’s method are comparable. Both methods are of fourth 
order in the step length. Even so the heptadiagonal approximation and the extended 
Numerov method, which are both sixth-order methods, reproduce similar results, 
although the extended Numerov method seems to have a little more accuracy. 
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Table 1. Comparison of the results for the potential (1.2) with ( A ,  g) = (0,O) derived with 
the classical fourth- and sixth-order method (formula (1.6)) with the Numerov method, 
the extended Numerov method and exact values, respectively. For the numerical values 
differences between exact and computed results are listed in absolute values. The considered 
value R is equal to 10 and the step length h = 0.05 ([a] refers to Fack and Vanden Berghe 
(1985)). 

E ,  €2 E, E4 
~~ 

Exact 1 3 5 7 
Absolute differences between exact value and computed value: 
[a] pentadiagonal 0.000 000 1 0.000 000 9 0.000 003 0.000 008 

Numerov 0.000 000 os 0.000 000 3 0.000 001 0.000 003 
Extended Numerov 0.000 000 000 06 0.000 000 000 5 0.000 000 002 0.000 000 007 

[a] heptadiagonal 0.000 000 000 2 0.000 000 002 0.000 000 007 0.000 000 02 

In table 2 the present results for potential (1.2) with ( A ,  g)=(O.1,0.1) and 
(10.0, 10.0), respectively, are listed together with previously derived results obtained 
within the classical finite difference approach of the present authors (Fack and Vanden 
Berghe 1985) and with the dynamic group techniques of Fack et al (1986). Again the 
high degree of precision obtained with the extended Numerov method is obvious. 

Several authors have studied a class of exact solutions of the Schrodinger equation 
(1.1) with potential (1.2). These solutions all correspond to negative A values. They 
yield interesting material for testing the validity and accuracy of our numerical methods. 
The formulae describing these exact eigenvalues have been discussed in Fack and 
Vanden Berghe (1985). In table 3 we compare for g = 0.1 these exact values with the 

Table 2. Comparison of the results for the potential (1.2) for two sets of ( A ,  g) derived 
with the classical sixth-order method (heptadiagonal case) ([a] Fack and Vanden Berghe 
(1985)), dynamic group techniques ([b] Fack er al (1986)) and the present methods, 
respectively. Again R = 10, h = 0.05. 

A =0.1 A = 10.0 
g = o . 1  g = 10.0 

E ,  [a] heptadiagonal 
[b] dynamic group 
Numerov 
Extended Numerov 

E ,  [a] heptadiagonal 
[b] dynamic group 
Numerov 
Extended Numerov 

E ,  [a] heptadiagonal 
[b] dynamic group 
Numerov 
Extended Numerov 

E4 [a] heptadiagonal 
[b] dynamic group 
Numerov 
Extended Numerov 

1.043 173 713 
1.043 173 713 
1.043 173 657 
1.043 173 713 

3.120081 862 
3.120 081 864 
3.120081 484 
3.120081 863 

5.181 094777 
5.181 094786 
5.181 093 448 
5.181 094783 

7.23 1 009 954 
7.231 009981 
7.231 006 646 
7.231 009973 

1.580 022 326 
1.580 022 327 
1.580 022 204 
1.580 022 327 

3.879 036 829 
3.879 036 830 
3.879 036 435 
3.879 036 830 

5.832 767 522 

5.832 766 134 
5.832 767 530 

7.903 154 133 

7.903 150 884 
7.903 154 152 

- 

- 
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Table 3. Comparison of some exact eigenvalues (derived in [a] Fack and Vanden Berghe 
(1985)) for the potential (1.2) with g = 0.1 and a special selection of negative A values with 
the heptadiagonal case [a] and the present results. By (i+), respectively ( i - ) ,  we indicate 
the ith even, respectively odd, eigenvalue. Again R = 10, h =0.05. 

Absolute differences between exact value and computed value 

Exact value [a] [a] heptadiagonal Numerov extended Numerov 

-0.42 0.8 0.000 000 000 08 0.000 000 03 0.000 000 000 03 
(1+) 

- 0 . 6 7 + 0 . 1 m  2 . 3 + m  0.000 000 004 0.000 000 7 0.000 000 01 
= -0.495 357 51 14.046 424 920 
(2+) 

-0.46 2.4 0.OOO OOO OOO 8 0.000 000 2 0.000 000 000 2 
(1-1 

-0.73 + 0 . 1 m  3 . 7 + m  0.000 000 01 0.000 002 0.000 000 03 
a -0.527 762 52 t5.722 374 842 
(2-1 

present and previous numerical results. Again for the lowest-lying states the supremacy 
of the extended Numerov method is evident. 

For the symmetric double-well potential (1.3) eigenvalues can be obtained by using 
an extended version of the method of continued fractions as introduced by Morse and 
Stuckelberg (1931). For b = 4 i  + 1 ( b  = 4 i  + 3), i E N, the continued fraction correspond- 
ing to odd- (even-) parity states is terminated and the first i eigenvalues can be obtained 
with a very high degree of accuracy. Table 4 lists for some b values the exact eigenvalues 
and the differences between the computed and exact values. Also here, the extended 

Table 4. Comparison of some exact eigenvalues ([a] Morse and Stuckelberg (1931)) with 
the heptadiagonal case ([b] Fack and Vanden Berghe (1985)) and the present methods for 
the potential (1.3). The value used for R is 4 and the step length h is 0.02. 

Absolute differences between exact value and computed value 

b Panty Exact value [a] [b] heptadiagonal Numerov extended Numerov 

11 even -8 
0 
8 

0 
13 odd -11.313 708 500 

11.313 708 500 
15 even -15.077 508 510 

-3.559 316 943 
3.559 316 943 

15.077 508 510 
17 odd -19.158416010 

-5.740 652 916 
5.740 652 916 

19.158 416 010 

0.000 000 001 
0.000 000 002 
0.000 000 01 
o.oO0 000 001 
0.000 000 009 
0.000 000 04 
0.000 000 004 
0.000 000 005 
0.000 000 02 
0.000 000 09 
0.000 000 007 
0.000 000 01 
0.000 000 06 
0.000 000 2 

0.000 000 3 
0.000 000 5 
0.000 003 
0.000 000 5 
0.000 002 
0.000 007 
0.000 000 5 
0.000 001 
0.000 003 
0.000 01 
0.000 000 6 
0.000 003 
0.000 007 
0.000 03 

0.000 000 000 4 
0.000 000 000 8 
0.000 000 004 
0.000 000 000 4 
0.000 000 003 
0.000 000 01 
0.000 000 002 
0.000 000 001 
0.000 000 009 
0.000 000 03 
0.000 000 004 
0.000 000 001 
0.000 000 02 
0.000 000 06 
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Numerov method delivers similar results to the heptadiagonal sixth-order classical 
method. 

For the Razavy potential (1.4) an analytical solution exists for the first ( n  + 1) levels 
(Razavy 1980). In table 5 we compare these exact solutions with our results for some 
values of n and m. For these examples the extended Numerov method reproduces 
the most accurate results. 

Table 5. Comparison of some exact eigenvalues ([a] Razavy (1980)) with the classical 
sixth-order method ([b] Fack and Vanden Berghe (1985)) and the present Numerov methods 
for the potential (1.4). The R and h values used are also listed. 

n m R ( h )  Exact value [a] 

1 1 2.48 

2 1 2.48 
(0.01 24) 

(0.0 124) 

1 10 1.32 

2 10 1.32 
(0.0066) 

(0.0066) 

-2 
0 

-4 

- 1 1  
9 

-4 

-2(1 +fi) 

2 ( d -  1 )  

- 2 ( l + d m )  

2 ( V m - 1 )  

Absolute differences between exact value and computed value 

[b] heptadiagonal 

0.000 000 000 03 
0.000 000 000 07 
0.000 000 000 6 
0.000 000 001 
0.000 000 003 
0.OOO 000 000 3 
0.OOO 000 005 
0.000 000 001 
0.000 OOO 02 
0.000 000 1 

Numerov 

0.000 000 004 
0.000 000 02 
0.000 000 02 
0.000 000 03 
0.000 000 07 
0.000 000 01 
0.000 000 14 
0.000 000 01 
0.OOO 000 1 
0.000 000 5 

extended Numerov 

0.000 000 000 04 
0.000 000 000 03 
0.000 000 000 003 
0.000 000 000 03 
0.000 000 000 05 
0.000 000 000 08 
0.000 000 001 
0.000 000 000 3 
0.000 000 004 
0.000 000 03 

5. Summary 

In this paper we have presented a fourth- and a sixth-order numerical method for the 
determination of the solutions of some specific Schrodinger equations. We have 
introduced an extended version of the well known Numerov method. The obtained 
numerical results for a variety of potentials considered confirm the high degree of 
precision obtainable with this new method. It is however clear that still more terms 
in the series expansion on the right-hand side of (2.4) can be included and that still 
higher accuracy can be obtained in this way. 
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